

ECE697AA – Lecture 11

Congestion Control: TCP-Friendly UDP and RED

Tilman Wolf Department of Electrical and Computer Engineering 10/09/08

TCP and **UDP**

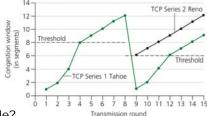
What happens if TCP and UPD flows share a link?

ECE697AA - 10/09/08

UMass Amherst – Tilman Wolf

TCP and UDP

- What happens if TCP and UPD flows share a link?
- How does UDP react to congestion?
- How can UDP detect congestion?
- UDP is typically non-reactive
 - · No congestion detection
 - No congestion control
 - · No fairness with TCP
- How should UDP react to congestion?
 - "TCP-friendly"
 - Same throughput as if it was a TCP connection


ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

3

Throughput of TCP

- What is the throughput of a TCP connection?
 - Congestion avoidance mode
 - » Window varies from W/2 to W
 - » One packet is lost during each cycle (why only one?)

- Loss rate
 - » How many packet sent per cycle?

$$\frac{W}{2} + \left(\frac{W}{2} + 1\right) + \dots + W = \sum_{i=W/2}^{W} i$$

$$\sum_{i=W/2}^{W} i = \frac{W}{2} \left(\frac{W}{2} + 1 \right) + \sum_{i=0}^{W/2} i$$

$$\frac{W}{2} \left(\frac{W}{2} + 1 \right) + \sum_{i=0}^{W/2} i = \frac{W^2}{4} + \frac{W}{2} + \frac{W/2(W/2+1)}{2} = \frac{3}{8}W^2 + \frac{3}{4}W$$

ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

_

Throughput of TCP

- Loss rate (cont.)
 - » One packet per cycle

$$L = \frac{1}{\frac{3}{8}W^2 + \frac{3}{4}W}$$

- Window size

» Solve for W
» For large W,
$$\frac{3}{8}W^2 >> \frac{3}{4}W$$
:
 $L \approx \frac{3}{8}W^2$ and $W \approx \sqrt{\frac{8}{3L}}$

- Throughput
 - » incl. MSS because we consider packets

$$T = \frac{3}{4} \sqrt{\frac{8}{3L}} \frac{MSS}{RTT} = 1.22 \frac{MSS}{RTT \sqrt{L}}$$

ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

TCP-friendly UDP

- TCP friendly UDP requirements
 - · Consider packet loss
 - · Perform congestion control
 - · Use algorithm that generates throughput with

$$T \le 1.22 \frac{MSS}{RTT\sqrt{L}}$$

- If L=0, then maximum rate
- Note
 - · Requires maintenance of RTT and MSS
 - RTT estimates should be updates once per RTT

ECE697AA - 10/09/08

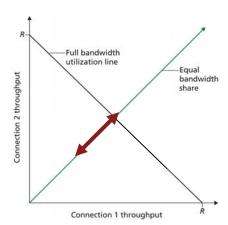
UMass Amherst - Tilman Wolf

TCP in wireless networks

- What happens to TCP in wireless networks?
- Wireless networks
 - · Packet loss due to corruption on link
- TCP behavior
 - · Packet loss is considered sign of congestion
 - · More chances for timeout
 - Throughput

$$T = 1.22 \frac{MSS}{RTT\sqrt{L}}$$

» 100x increase in loss causes 10x reduction in throughput


ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

7

TCP oscillations

- What happens if many TCP streams have same RTT?
 - · Synchronization possible
 - Example:

ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

Q

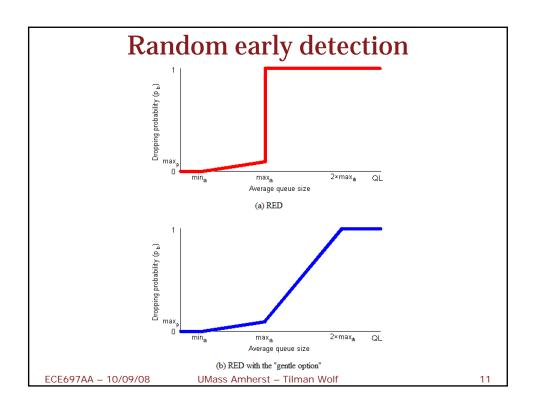
Congestion handling on routers

- Design goal of router
 - "Work conserving" in the broadest sense
 - Idle output is bad in time of congestion
 - · Large queues can avoid "underflow"
- How much buffer space is needed?
 - Depends on RTT and link bandwidth
 - · Rule of thumb: RTT*BW
 - What happens if buffer is larger?
- Better idea: avoid oscillation
 - Is there a way of preventing congestion?

ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

9


Random early detection

- Start throttling sources before gueue is full
 - · Throttle sources by dropping packet
- RED
 - If queue above threshold, drop random packet from queue
 - TCP flows will slow down before buffer space is exhausted
 - · Adapt drop probability with increasing queue length
- RED is based on local view
 - No end-system support required
 - · Incremental deployment possible
- "Active queue management"

ECE697AA - 10/09/08

UMass Amherst - Tilman Wolf

10

Assignments

- Read
 - Kurose & Ross: Chapter 8
- SPARK
 - Assessment quiz